A FACILE SYNTHESIS OF &-VALEROLACTONES BY PHOTOANNELATION¹

S. W. Baldwin* and M. T. Crimmins Paul M. Gross Chemical Laboratory Duke University Durham, North Carolina 27706

In conjunction with our studies of the photochemical annelation of alkenes with α -formyl ketones² and their equivalents, we have been utilizing 5,5-dimethyl-4-oxacyclopentenone (1) as an α , β -unsaturated carbonyl photopartner.³ It has been shown that the cyclobutane photoproducts from 1 and alkenes can be readily elaborated to cyclohexenones by one of two alternative procedures.⁴

Recently it occurred to us that these same products are ideally suited for conversion to δ -lactones, and because of the high level of interest in such lactones and their α -methylene counterparts, 5^{-7} we have evolved the following reaction sequences for their formation. The conversion of photoproduct $\underline{3}$ to lactone $\underline{8}$ is illustrative. Baeyer-Villiger oxidation of $\underline{3}$ with \underline{m} -chloroperbenzoic acid yielded oxalactone $\underline{4}$, which then afforded hydroxyacid $\underline{5}$ on exposure to aqueous methanol. Treatment of $\underline{5}$ with NaBH₄ in refluxing isopropanol followed by an acidic workup then produced the \underline{cis} fused δ -lactone $\underline{8}$ in 78% yield (70% overall yield from cyclopentene).

$$\frac{1}{2} \qquad \frac{h\nu}{2} \qquad \frac{mcpba}{2} \qquad \frac{4}{4}$$

Alternatively retroaldol cyclobutane opening to the corresponding methyl ester $\underline{9}$ (methanol/ $\mathrm{H_3O}^+/\Delta$) followed by NaBH, reduction and acidic workup afforded the trans fused lactone $\underline{12}$ due to the rapid equilibration of $\underline{9}$ to the more stable trans isomer. Thus those photoproducts which have a hydrogen on the cycloalkene carbon adjacent to the latent aldehyde can be converted to either cis or trans fused δ -lactones, depending on reaction conditions.

A related method for the conversion of $\underline{3}$ to $\underline{\text{cis}}$ lactone $\underline{8}$ involved the formation of hydroxy nitrile $\underline{14}$ via Beckmann fragmentation of oxime $\underline{13}$. Treatment of $\underline{14}$ with NaBH, as before followed by base hydrolysis then yielded $\underline{8}$ in good yield. In some instances photoproducts have proved to be resistant to Baeyer-Villiger oxidation under a variety of conditions , and thus the Beckmann fragmentation route provides a useful alternate pathway for the formation of δ -lactones. In our hands, however, the production of lactones from the Baeyer-Villiger sequence was preferable in most cases, and the results of several typical experiments are collected in the Table. 12

In summary we have presented a highly efficient method for the formation of δ -lactones which should prove general value in future synthetic efforts. A representative experimental procedure for the conversion of $\underline{3}$ to $\underline{8}$ follows.

Cis &-Lactone (8): To a solution of 4.17 g (23.2 mmole) of pure photoproduct 3 in 200 ml dry CH₂Cl₂ was added 6.70 g (33.1 mmole) m-chloroperbenzoic acid (85%) and 5.20 g (53.1 mmole) NaHCO₃ and the mixture was stirred at room temperature for 5 hrs. The reaction was quenched with 10% Na₂SO₃ (25 ml) and after stirring for 10 minutes the layers were separated and the aqueous layer extracted with CH₂Cl₂ (2 x 25 ml). The combined organic layers were washed with saturated NaHCO₃, dried (Na₂SO₄), and concentrated to afford 4.12 g (91%) of a clear oil, homogeneous by tlc. NMR (CCl₄) & 1.52 (s, 3H, CH₃), 1.55 (s, 3H, CH₃), 1.50-2.06 (m, 6H, (CH₂)₃), 2.45-2.82 (m, 2H, cyclobutane H's), 2.93-3.16 (m, 1H, CHCO₂C(CH₃)₄), 4.19 (dd, J=2Hz & 6Hz, 1H, CHOC(CH₃)₂); ir (film) 1735, 1376, 1295, and 1257cm⁻¹.

Table:	Formation	of &-Lactones	by	Photoannelation

Alkene	Photoproduct %	Oxalactone %	δ -Lactone %	Overall %
	b 89 9	91	86	70
	85 0	99 0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	77
	95 b,d	87	73 e	f 60
Y	85 d	99	1 97 0	82
	91 d	9,9	90 g	81

^aYields have not been optimized; all new photoproducts and δ -lactones gave satisfactory (±0.3%) elemental analyses and consistent spectral data. ^bReference 3. ^cReference 10. ^d All 1,1-disubstituted ethylenes studied to date give a single photoproduct regiochemistry, with a mixture of stereoisomers where possible. ^eReference 11. ^fThe low yield associated with this particular lactone is most likely the result of its greater volatility relative to the other lactones studied. ^gA 5:1 mixture of stereoisomers, the major one presumably resulting from initial photoaddition to the least hindered side of β -pinene.

A solution of 547 mg (2.75 mmole) of this crude exalactone in 50 ml CH₃OH and 2 ml H₂O was heated at reflux for 1.5 hours whereupon it was cooled and concentrated yielding 433 mg (100%) of a very viscous clear oil, hydroxy acid 5. NMR (acetone d₆) δ 4.11 (dd, J=4Hz & 8Hz, 1H, CHOH). Without purification this material was dissolved in 50 ml 2-propanol to which 789 mg (20.9 mmole) NaBH₄ was added, and the resulting mixture heated at reflux for 6 hr. After cooling to room temperature the reaction was cautiously quenched with 10% HCl (10 ml) whereupon the mixture was extracted with CH₂Cl₂ (3 x 50 ml). The combined organic extracts were washed with saturated NaHCO₃ (2 x 15 ml), dried (Na₂SO₄), and concentrated to yield 334 mg (80%) of a clear oil homogeneous by glc and tlc. Evaporative distillation (100°, 0.1 mm Hg) afforded the analytical sample of cis lactone 8. NMR (CCl₄) δ 1.21-2.09 (M, 6H, (CH₂)₃), 2.24-2.66 (M, 4H, CH₂CO & CH), 4.04 (AB of ABX, Δυ^{AB}=28Hz, J_{AB}=10Hz, J_{AX}=3.5Hz, J_{BX}=6Hz, 2H, CH₂O); ir (film) 1725, 1245, 1158, and 1257cm⁻¹.

Anal. calcd for C₀H₁₂O₂: C, 68.55; H, 8.63.

Found: C, 68.30; H, 8.84.

References and Notes

- 1. Financial assistance from a Biomedical Sciences Support Grant, administered by Duke University, is acknowledged with appreciation.
- (a) S. W. Baldwin, R. E. Gawley, R. J. Doll, and K. H. Leung, J. Org. Chem., 40, 1865 (1975);
 (b) S. W. Baldwin and R. E. Gawley, <u>Tetrahedron Lett.</u>, 3969 (1975).
- Previous use of (1) as a photochemical addend has been reported. (a) P. Margaretha, Chimia,
 29, 203 (1975); (b) P. Margaretha, Tetrahedron, 29, 1317 (1973); (c) P. Margaretha, ibid.,
 27, 6209 (1971); (d) P. Margaretha, Tetrahedron Lett., 4891 (1971).
- 4. S. W. Baldwin and J. M. Wilkinson, manuscript submitted for publication.
- (a) S. M. Kupchan, R. J. Hemingway, D. Werner, A. Karim, A. T. McPhail, and G. A. Sim,
 J. Am. Chem. Soc., 90, 3596 (1968); (b) D. J. Duchamp, C. G. Chidester, Acta Crystallogr.,
 Sect. B, 28, 173 (1972); (c) S. M. Kupchan, R. W. Britton, J. A. Lacadie, M. F. Ziegler,
 and C. W. Siegel, J. Org. Chem., 40, 648 and 654 (1975); (d) A. J. Weinheimer, J. A. Matson,
 M. B. Hossain, and D. van der Helm, Tetrahedron Lett., 2923 (1977).
- 6. S. W. Baldwin, M. T. Crimmins, and V. I. Cheek, Synthesis, 210 (1978).
- Several methods exist for the conversion of γ- and δ-lactones to their α-methylene counterparts. See, for example, P. A. Grieco and K. Hiroi, J. Chem. Soc., Chem. Commun., 1317 (1972).
- 8. A variety of stable β -hydroxy cyclobutane carboxylic acids and nitriles have been prepared by this general approach and will be reported on subsequently.
- 9. R. K. Hill, J. Org. Chem., 27, 29 (1962).
- G. Stork and R. K. Hill, J. Am. Chem. Soc., 79, 495 (1957).
- 11. G. Descotes, J.-C. Martin, and G. Labrit, Bull. Soc., Chim. Fr., 4151 (1969).
- For a synthesis of δ-lactones which is comparable in scope see C. G. Chavdarian and C. H. Heathcock, J. Org. Chem., 40, 2970 (1975).

(Received in USA 22 August 1978)